Min Qian. Wear debris sensor using intermittent excitation for highsensitivity, wide detectable size range, and low heat generation
发布人:樊凯  发布时间:2022-07-03   浏览次数:73


DOI10.1109/TIE.2022.3190894


Abstract

A highly sensitive inductive wear debris sensor based on intermittent excitation is presented for real-time condition monitoring of machinery faults. The specially designed intermittent excitation method utilizes short-term large currents to periodically generate a strong alternating magnetic field, thus attaining enhanced sensitivity and low heat generation at the same time. A combination of different excitation currents is also applied for multi-sensitivity measurement to expand the detectable size range and detection accuracy, which is suitable for industrial occasions with complex detection requirements. In order to verify the effectiveness of intermittent excitation, a sensor prototype and signal processing system have been constructed. The testing results demonstrate that the sensitivity of the proposed sensor using intermittent excitation with a duty cycle of 1% is 10 times that of constant excitation with the same power consumption. A wide detectable size range of 48–1426 µm iron particles and 112–3802 µm copper particles in a 10 mm diameter sensing channel have been realized by dual-sensitivity measurement with outstanding temperature stability and size accuracy. The design concept of intermittent excitation can be extended to various types of debris sensors and other online detection equipment for great performance improvement.


摘要

本文提出了一种基于间歇激励的高灵敏感应式磨粒传感器,用于机械故障的实时状态监测。间歇励磁法利用短时大电流来产生周期性强交变磁场,以实现高检测灵敏度和低发热;还采用不同激励电流的组合进行多灵敏度测量,以扩大尺寸量程和提高检测精度,这将适用于检测要求复杂的工业场合。为了验证间歇激励的有效性,制作了传感器样机和信号处理系统。测试结果表明,相同功耗下使用占空比为1% 的间歇激励法的传感器灵敏度是使用恒定激励法的10倍;通过双灵敏度测量在10 mm直径传感通道内实现了48-1426 µm 铁颗粒和112-3802 µm铜颗粒的超大尺寸量程,并且具有出色的温度稳定性和检测精度。间歇激励的设计理念可以推广到各类磨粒传感器和其他在线检测设备中,实现极大的性能提升。


图片摘要

  本文提出的间歇激励波形由大、小电流激励段组合而成。在功率受限的情况下,相比传统的恒定激励法,间歇激励法通过控制占空比能使磨粒传感器获得更高的检测灵敏度,并且有效控制线圈发热,使其具有良好的温度稳定性;由于不同激励电流峰值分别对应不同的检测灵敏度,多电流激励组合能够实现多灵敏度、大量程测量,提高了检测精度。



1 (a) 间歇周期为T、占空比为D、电流峰值组合为Ipeak1Ipeak2的间歇激励波形图; (b)电流峰值组合为Ipeak1Ipeak2的间歇激励和电流峰值分别为Ipeak1Ipeak2的恒定激励对应的微粒信号。


亮点

相比传统的恒定激励法,间歇激励法能使磨粒传感器获得更高的检测灵敏度,同时实现大量程、低发热的优越检测性能。