研究成果
发表文章
 

2023年

1.     ZHANG J, Zhihua F. Design and identification of a double-acting piezoelectric-hydraulic hybrid actuator[J]. Chinese Journal of Aeronautics, 2023.

 

2.     Kong M M, Liu P F, Diao W, et al. A novel ultra-simplified flexure-based spring-mass device for relative gravimeter[J]. Measurement Science and Technology, 2023.


3.     Shi R, Zhang J, Feng Z, et al. A tuning fork gyroscope with drive-sense orthogonal thin-walled holes for high sensitivity[J]. Review of Scientific Instruments, 2023, 94(8).


4.     Fan K, Shi R, Feng Z. IDM-Assisted Capacitive Displacement Sensor for Large-Range, High-Precision Positioning Systems[J]. IEEE Transactions on Industrial Electronics, 2023.


5.     Zhang J J, Qian M, Pan Q, et al. Design and development of a piezoelectric-hydraulic hybrid actuator with quarter-wavelength tubes[J]. Smart Materials and Structures, 2023.

 


2022年

1.     Kong M, Diao W, Qian M, et al. Influence of Dust Particles on the Insulating Performance of SF6 Gas in a Small Gap at Atmospheric Pressure[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022.

 

2.     Diao W, Pan Q, Li Y, et al. Dynamic Investigation on Effective Bulk Modulus of Hydraulic oil Using Piezoelectric Transducers[C]//2022 16th Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2022: 614-618.


3.     Fan K, Wu L, Kong M, et al. Amplitude Stability Detection of Sinusoidal Excitation Signal for High Precision Sensors[J]. IEEE Transactions on Industrial Electronics, 2022.


4.     Qian M, Ren Y, Feng Z. Wear Debris Sensor Using Intermittent Excitation for High Sensitivity, Wide Detectable Size Range, and Low Heat Generation[J]. IEEE Transactions on Industrial Electronics, 2022.


5.     Diao W, Pan Q, Li Y, et al. Development of a resonant piezohydraulic hybrid actuator[J]. Review of Scientific Instruments, 2022, 93(7): 075002.


6.     Feng Z, Kong M, Shi R, et al. A three million Q factor tuning fork resonator based on a vibration isolation structure[J]. AIP Advances, 2022, 12(6): 065203.


7.     Liao X, He Q, Feng Z. Dynamic mass isolation method utilized in self-moving precision positioning stage for improved speed performance[J]. Review of Scientific Instruments, 2022, 93(5): 055004.


8.     Wu L, Zhao G, Feng Z. A High Resolution Synchronous Demodulation Method Based on Gated Integrator for Precision Sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-9.



2021

1.     Zhang J J, Diao W D, Fan K, et al. A miniature standing wave linear ultrasonic motor[J]. Sensors and Actuators A: Physical, 2021, 332: 113113.


2.     Zhao G F, Wu L, Feng Z L, et al. A synchronous demodulation technology based on sample-and-hold for eddy current sensors[J]. Review of Scientific Instruments, 2021, 92(11): 115003.


3.     Liu P, Kong M, Diao W, et al. High-speed giant magnetostrictive actuator using laminated silicon steel core[J]. Review of Scientific Instruments, 2021, 92(5): 055004.


4.     Diao W, Ye Y, Chen J, et al. Effect of the compressible spaces on the performance of piezoelectric pump with rhombic micro-displacement amplifying vibrator[J]. Journal of Intelligent Material Systems and Structures, 2021: 1045389X211006899.


5.     Zhang J, Lu S, Liao X, et al. Construction of an intravascular ultrasound catheter with a micropiezoelectric motor internally installed[J]. Review of Scientific Instruments, 2021, 92(1): 015005.


6.     Wu L, Zhao G, Ying J, et al. A Thermal Drift Compensation Method for Precision Sensors Considering Historical Temperature State[J]. IEEE Transactions on Industrial Electronics, 2021.



2020

1.     Qian M, Ren Y, Zhao G, et al. Ultrasensitive inductive debris sensor with a two-stage auto asymmetry compensation circuit[J]. IEEE Transactions on Industrial Electronics, 2020.


2.     Diao W, Pan Q, Feng Z. Static characteristics of piezoelectric ceramics under high compressive stress[J]. Ferroelectrics, 2020, 558(1): 165-174.


3.     Zhou Y, Chang J, Liao X, et al. Ring-shaped traveling wave ultrasonic motor for high-output power density with suspension stator[J]. Ultrasonics, 2020, 102: 106040.


4.     Diao W, Liao X, Feng Z. Reducing the resonant frequency difference of piezoelectric transformers parallel system with mechanical coupling[J]. Ferroelectrics Letters Section, 2020, 47(1-3): 27-39.



2019

1.       Qian M, Ren Y, Feng Z. Interference reducing by low voltage excitation for a debris sensor with triple-coil structure[J]. Measurement Science and Technology, 2019.


2.       Liao X, Pang X, He L, et al. Dynamic Mass Isolation for Improving the Moving Efficiency of an Impact Drive Mechanism[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8526-8534.


3.       Zhao G F, Jin Y, Lei W, et al. Eddy current displacement sensor with ultrahigh resolution obtained through the noise suppression of excitation voltage[J]. Sensors and Actuators A: Physical, 2019: 111622.


4.       Zhao G, Yin J, Wu L, et al. Ultrastable and Low-Noise Self-Compensation Method for Circuit Thermal Drift of Eddy Current Sensors Based on Analog Multiplier[J]. IEEE Transactions on Industrial Electronics, 2019, 67(10): 8851-8859.


5.       Ye Y, Chen J, Pan Q S, et al. Suppressing the generation of cavitation by increasing the number of inlet check valves in piezoelectric pumps[J]. Sensors and Actuators A: Physical, 2019, 293: 56-61.


6.       Li M, Shao W, Jiang X, et al. Deconvolution in Intravascular Ultrasound to Improve Lateral Resolution[J]. Ultrasonic imaging, 2019: 0161734619838456.


7.       Li M, Feng Z. An Optimum Imaging Scheme for IVUS Arrays: Eccentric Cylinder Wave Compounding[J]. Ultrasonic imaging, 2019, 41(3): 173-187.


8.       Chang J J, Liao X X, Zhou Y N, et al. Design of an adaptive stator for bundled piezo-walk motors[J]. Review of Scientific Instruments, 2019, 90(4): 045004.


9.       Qian M, Zhao G, Ren Y, et al. Triple-Coil Inductive Debris Sensor with Special Shielded Coils for Depressing Interference of Dielectric Components[J]. Procedia Manufacturing, 2019, 39: 1279-1288.



2018

1.       Ren Y J, Zhao G F, Qian M, et al. A highly sensitive triple-coil inductive debris sensor based on an effective unbalance compensation circuit[J]. Measurement Science and Technology, 2018, 30(1): 015108.


2.       Ren Y J, Li W, Zhao G F, et al. Inductive debris sensor using one energizing coil with multiple sensing coils for sensitivity improvement and high throughput[J]. Tribology International, 2018, 128: 96-103.


3.       Ye Y, Chen J, Ren Y J, et al. Valve improvement for high flow rate piezoelectric pump with PDMS film valves[J]. Sensors and Actuators A: Physical, 2018, 283: 245-253.


4.       Huang F S, Feng Z H, Ma Y T, et al. Investigation on high-frequency performance of spiral-shaped trapezoidal piezoelectric cantilever[J]. Modern Physics Letters B, 2018, 32(17): 1850187.


5.       Huang F S, Feng Z H, Ma Y T, et al. High-frequency performance for a spiral-shaped piezoelectric bimorph[J]. Modern Physics Letters B, 2018, 32(10): 1850111.



2017

1.       Li W, Ye Y, Zhang K, et al. A thickness measurement system for metal films based on eddy-current method with phase detection[J]. IEEE Transactions on Industrial Electronics, 2017, 64(5): 3940-3949.



2016

1.       Ba X, Pan Q, Ju B, et al. Ultrafast Displacement Actuation of Piezoelectric Stacks With Time-Sequence[J]. IEEE Transactions on Industrial Electronics, 2016, 64(4): 2955-2961.


2.       Pan Q, Huang F, Chen J, et al. High-speed low-friction piezoelectric motors based on centrifugal force[J]. IEEE Transactions on Industrial Electronics, 2016, 64(3): 2158-2167.


3.       Chen J, Liu Y, Ye Y, et al. Automatic biasing circuit for driving piezoelectric bimorph actuators safely and efficiently[C]//2016 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2016: 239-242.


4.       Gong L J, Pan C L, Pan Q S, et al. Theoretical analysis of dynamic property for piezoelectric cantilever triple-layer benders with large piezoelectric and electromechanical coupling coefficients[J]. Journal of Advanced Dielectrics, 2016, 6(03): 1650017.


5.       Li M, Feng Z. Accurate Young’s modulus measurement based on Rayleigh wave velocity and empirical Poisson’s ratio[J]. Review of Scientific Instruments, 2016, 87(7): 075111.


6.       Zhang L, Long Q, Liu Y, et al. Correlation-steered scanning for scanning probe microscopes to overcome thermal drift for ultra-long time scanning[J]. Ultramicroscopy, 2016, 166: 16-26.


7.       Ren Y J, Ma Y T, Huang D, et al. Elastic string check valves can efficiently heighten the piezoelectric pump’s working frequency[J]. Sensors and Actuators A: Physical, 2016, 244: 126-132.


8.       Huang F S, Zhang L S, Pan Q S, et al. Investigation of tuning-fork double piezoelectric fans with elastic base[J]. Applied Thermal Engineering, 2016, 102: 760-769.


9.       Ju B, Shao W, Huang D, et al. A Topology for Inductorless Actuation of Piezoelectric Transformer With Special Driving Waveform[J]. IEEE Transactions on Power Electronics, 2016, 32(2): 1346-1354.


10.      Chen J, Zhang L S, Feng Z H. Highfidelity AFM scanning stage based on multilayer ceramic capacitors[J]. Scanning, 2016, 38(3): 184-190.


11.      Li W, Wang H, Feng Z. Non-contact online thickness measurement system for metal films based on eddy current sensing with distance tracking technique[J]. Review of Scientific Instruments, 2016, 87(4): 045005.



2015

1.       Chen J, Huang D, Feng Z H. A U-shaped piezoelectric resonator for a compact and high-performance pump system[J]. Smart Materials and Structures, 2015, 24(10): 105009.


2.       Yan G Y, Feng Z H. Voltage proportional control reduces inertial force from an unbalanced weight in a dual-mounted actuator structure used for high performance scanning probe microscopes[J]. Sensors and Actuators A: Physical, 2015, 233: 319-323.


3.       Yan G Y, Liu Y B, Feng Z H. A dual-stage piezoelectric stack for high-speed and long-range actuation[J]. IEEE/ASME Transactions on Mechatronics, 2015, 20(5): 2637-2641.


4.       Ju B, Shao W, Zhang L, et al. Piezoelectric ceramic acting as inductor for capacitive compensation in piezoelectric transformer[J]. IET Power Electronics, 2015, 8(10): 2009-2015.


5.       Wang X, Liu Y B, Xiao G J, et al. Dual-branch reed for resonant cavity wind energy harvester with enhanced performances[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(12): 2270-2280.


6.       Gong L J, Pan Q S, Li W, et al. Harvesting vibration energy using two modal vibrations of a folded piezoelectric device[J]. Applied Physics Letters, 2015, 107(3): 033904.


7.       Pan Q S, He L G, Huang F S, et al. Piezoelectric micropump using dual-frequency drive[J]. Sensors and Actuators A: Physical, 2015, 229: 86-93.


8.       Wang H, Li W, Feng Z. A compact and high-performance eddy-current sensor based on meander-spiral coil[J]. IEEE Transactions on Magnetics, 2015, 51(9): 1-6.


9.       Zhang J, Zhang L S, Feng Z H. Switched capacitor charge pump used for lowdistortion imaging in atomic force microscope[J]. Scanning, 2015, 37(3): 232-236.


10.      Wang H, Li W, Feng Z. Noncontact thickness measurement of metal films using eddy-current sensors immune to distance variation[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(9): 2557-2564.


11.      Ju B, Shao W, Feng Z. Piezoelectric filter module used in harmonics elimination for high-efficiency piezoelectric transformer driving[J]. IEEE Transactions on Power Electronics, 2015, 31(1): 524-532.


12.      Wang H, Li W, Feng Z. Note: Eddy current displacement sensors independent of target conductivity[J]. Review of Scientific Instruments, 2015, 86(1): 016118.


13.      Pan Q, Liu Y, Liu Y, et al. Design and fabrication of a large displacement piezoelectric actuator[C]//2015 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications (SPAWDA). IEEE, 2015: 261-264.



2014

1.       Pan Q S, Zhang Q, Wang H B, et al. Piezoelectric linear motor using resonant-type clamping based on harmonic vibration synthesis[J]. Mechatronics, 2014, 24(8): 1112-1119.


2.       Pan C, Xiao G, Feng Z, et al. Electromechanical characteristics of discal piezoelectric transducers with spiral interdigitated electrodes[J]. Smart Materials and Structures, 2014, 23(12): 125029.


3.       Ma Y, Wang X, Zhong J, et al. Resonantly driven piezoelectric micropump with PDMS check valves and compressible space[C]//Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications. IEEE, 2014: 158-161.


4.       Wang H, Liu Y, Li W, et al. Design of ultrastable and high resolution eddy-current displacement sensor system[C]//IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2014: 2333-2339.


5.       Wang X Y, Ma Y T, Yan G Y, et al. High flow-rate piezoelectric micropump with two fixed ends polydimethylsiloxane valves and compressible spaces[J]. Sensors and Actuators A: Physical, 2014, 218: 94-104.


6.       Wang X Y, Ma Y T, Yan G Y, et al. A compact and high flow-rate piezoelectric micropump with a folded vibrator[J]. Smart Materials and Structures, 2014, 23(11): 115005.


7.       Li W, Wang H, Feng Z. Ultrahigh-resolution and non-contact diameter measurement of metallic wire using eddy current sensor[J]. Review of Scientific Instruments, 2014, 85(8): 085001.


8.       Zhang J, Zhang L, Liu Y, et al. Mirror control with strain feedback and charge drive for high-performance of scanning probe microscope positioners[J]. Sensors and Actuators A: Physical, 2014, 214: 134-141.


9.       Wang H, Ju B, Li W, et al. Ultrastable eddy current displacement sensor working in harsh temperature environments with comprehensive self-temperature compensation[J]. Sensors and Actuators A: Physical, 2014, 211: 98-104.


10.      Zhang L, Zhang J, Feng Z. Note: Pseudo-charge-driver for grounded piezoelectric actuators with high linearity[J]. Review of Scientific Instruments, 2014, 85(3): 036113.


11.      Chen J, Feng Z. X7R dielectric multilayer ceramic capacitors show good micro-actuating properties with little hysteresis[J]. Electronics Letters, 2014, 50(7): 538-540.


12.      Pan C, Liao W H, Liu Y, et al. Vibration characteristics of a discal piezoelectric transducer with spiral interdigitated electrodes[C]//Active and Passive Smart Structures and Integrated Systems 2014. International Society for Optics and Photonics, 2014, 9057: 90571A.


13.      Pan Q S, He L G, Pan C L, et al. Resonant-type inertia linear motor based on the harmonic vibration synthesis of piezoelectric bending actuator[J]. Sensors and Actuators A: Physical, 2014, 209: 169-174.

14.      Yi Yan G, Bin Liu Y, Hua Feng Z. Asymmetric actuating structure generates negligible influence on the supporting base for high performance scanning probe microscopies[J]. Applied Physics Letters, 2014, 104(6): 063506.


15.      Gong L, Pan Q, Feng Z. Admittance matrix of a symmetrical triple-layer piezoelectric cantilever[C]//Proceedings of the 2014 Symposium on Piezoelectricity, Acoustic Waves, and Device Applications. IEEE, 2014: 322-326.



2013

1.       Wang H, Feng Z. Ultrastable and highly sensitive eddy current displacement sensor using self-temperature compensation[J]. Sensors and Actuators A: Physical, 2013, 203: 362-368.


2.       Zhang L, Long Q, Pan C, et al. Principle and simulation of correlation steered scanning for SPM to overcome thermal drift[C]//2013 IEEE International Conference on Imaging Systems and Techniques (IST). IEEE, 2013: 327-331.


3.       He L, Pan C, Wang H, et al. Note: Arbitrary periodical mechanical vibrations can be realized in the resonant state based on multiple tuning fork structure[J]. Review of Scientific Instruments, 2013, 84(9): 096104.


4.       Zhang L S, Liu Y B, Pan C L, et al. Leakage current characterization and compensation for piezoelectric actuator with charge drive[J]. Sensors and Actuators A: Physical, 2013, 199: 116-122.


5.       He L G, Zhang Q, Pan C L, et al. Piezoelectric motor based on synchronized switching control[J]. Sensors and Actuators A: Physical, 2013, 197: 53-61.


6.       Guan Q C, Ju B, Xu J W, et al. Improved strain distribution of cantilever piezoelectric energy harvesting devices using H-shaped proof masses[J]. Journal of Intelligent Material Systems and Structures, 2013, 24(9): 1059-1066.


7.       Zhang J, Zhang L, Feng Z. Integration of strain feedback and charge drive for high-performance of piezoelectric actuators[J]. Review of Scientific Instruments, 2013, 84(5): 054705.


8.       Ju B, Shao W, Pan C, et al. Polypropylene membrane decreases contact wear of piezoelectric transformer with heat transfer structure[J]. Electronics Letters, 2013, 49(10): 650-651.



2012

1.       Wang H B, Feng Z H. A highly sensitive magnetometer based on the Villari effect[J]. IEEE Transactions on Magnetics, 2012, 49(4): 1327-1333.


2.       Zhang L S, Liu Y B, Huang L, et al. Using output voltage of charge drivers to reduce hysteresis of piezoelectric actuators[J]. Electronics letters, 2012, 48(12): 697-698.


3.       Xu J W, Liu Y B, Shao W W, et al. Optimization of a right-angle piezoelectric cantilever using auxiliary beams with different stiffness levels for vibration energy harvesting[J]. Smart Materials and Structures, 2012, 21(6): 065017.


4.       Liu Y B, Zhang L S, Feng Z H. Note: Self-sensing based on charge control improves the performance of active damping using piezoelements[J]. Review of Scientific Instruments, 2012, 83(2): 026103.


5.       Shao W W, Chen L J, Pan C L, et al. Power density of piezoelectric transformers improved using a contact heat transfer structure[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2012, 59(1): 73-81.


6.       Agbossou A, Liang P C, Zhang Q, et al. Piezoelectric tube with helical electrodes: finite element analysis of actuator and energy harvest devices[J]. Journal of Intelligent Material Systems and Structures, 2012: pp. NC.



2011

1.       Yin J, Pan C L, Wang H B, et al. A high-sensitive static vector magnetometer based on two vibrating coils[J]. Review of Scientific Instruments, 2011, 82(12): 124702.


2.       Ma Y T, Feng Z H, Huang L, et al. Charge pump controller for grounded piezoelectric actuators used in precise positioning[J]. Electronics letters, 2011, 47(15): 855-856.


3.       Pan C L, Feng Z H, Ma Y T, et al. Coupled torsional and longitudinal vibrations of piezoelectric fiber actuator with helical electrodes[J]. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 2011, 58(4): 829-837.


4.       Ma Y T, Huang L, Liu Y B, et al. Note: creep character of piezoelectric actuator under switched capacitor charge pump control[J]. Review of Scientific Instruments, 2011, 82(4): 046106.


5.       Pan C L, Ma Y T, Yin J, et al. Miniature orthogonal optical scanning mirror excited by torsional piezoelectric fiber actuator[J]. Sensors and Actuators A: Physical, 2011, 165(2): 329-337.


6.       Qi Z, Liang P C, Ting M Y, et al. Piezoelectric rotary motor based on active bulk torsional element with grooved helical electrodes[J]. IEEE/ASME Transactions on mechatronics, 2011, 17(2): 260-268.



2010

1.       Shao W W, Feng Z H, Xu J W, et al. Radiator heightens power density of piezoelectric transformers[J]. Electronics letters, 2010, 46(25): 1662-1663.


2.       Huang L, Ma Y T, Feng Z H, et al. Switched capacitor charge pump reduces hysteresis of piezoelectric actuators over a large frequency range[J]. Review of Scientific Instruments, 2010, 81(9): 094701.


3.       Zhao J, Liu W, Liu Y, et al. Research on Uniform-strain Piezoelectric Energy Harvesting Mechanism[J]. Yadian yu Shengguang, 2010, 32(3): 406-409.


4.       Ji J, Kong F, He L, et al. Piezoelectric wind-energy-harvesting device with reed and resonant cavity[J]. Japanese Journal of Applied Physics, 2010, 49(5R): 050204.


5.       Xu J W, Shao W W, Kong F R, et al. Right-angle piezoelectric cantilever with improved energy harvesting efficiency[J]. Applied Physics Letters, 2010, 96(15): 152904.


6.       Ma Y T, Kong F R, Pan C L, et al. Miniature tubular centrifugal piezoelectric pump utilizing wobbling motion[J]. Sensors and Actuators A: Physical, 2010, 157(2): 322-327.



2009

1.       Ma Y, Pan C, Zhang Q, et al. Two-phase piezoelectric motor using a multiple-tube structure actuator[J]. Japanese Journal of Applied Physics, 2009, 48(9R): 096501.


2.       Ma Y, Feng Z, Pan C, et al. Static and dynamic analysis of a four-tube piezoelectric actuator[J]. Review of Scientific Instruments, 2009, 80(6): 065101.


3.       Han W X, Zhang Q, Ma Y T, et al. An impact rotary motor based on a fiber torsional piezoelectric actuator[J]. Review of Scientific Instruments, 2009, 80(1): 014701.


4.       Ma Y, Pan C, Zhang Q, et al. Device processing, fabrication and measurement technologies, and instrumentation-Two-Phase Piezoelectric Motor Using a Multiple-Tube Structure Actuator[J]. Japanese Journal of Applied Physics, 2009, 48(9): 96501.



2008

1.       Pan C L, Ma Y T, Liu Y B, et al. Torsional displacement of piezoelectric fiber actuators with helical electrodes[J]. Sensors and Actuators A: Physical, 2008, 148(1): 250-258.


2.       Pan C L, Feng Z H, Ma Y T, et al. Small torsional piezoelectric fiber actuators with helical electrodes[J]. Applied Physics Letters, 2008, 92(1): 012923.



2007

1.       Liu W Q, Feng Z H, Liu R B, et al. The influence of preamplifiers on the piezoelectric sensor’s dynamic property[J]. Review of Scientific Instruments, 2007, 78(12): 125107.


2.       Liu W Q, Feng Z H, He J, et al. Maximum mechanical energy harvesting strategy for a piezoelement[J]. Smart Materials and Structures, 2007, 16(6): 2130.